Interview mit dem Wasserstoff-Experten Dr. Johannes Töpler

Interview mit dem Wasserstoff-Experten Dr. Johannes Töpler

HZwei: Dr. Töpler, wie würden Sie sich und Ihr Tätigkeitsfeld in Bezug auf den Themenkomplex Wasserstoff und Ihre Fachkompetenz beschreiben?
Meine berufliche Beschäftigung mit dem Wasserstoff begann 1977 bei DaimlerBenz mit der Aufgabe, für eine geplante Wasserstoffflotte in Kundenhand die Metall-Hydrid-Speicher zu bauen. Die Flotte war von 1984 bis 1988 in Berlin im Einsatz. 1989 habe ich mit Vorlesungen über „Erneuerbare Energien und Wasserstoff“ an der Hochschule Esslingen meine akademische Lehrtätigkeit begonnen, die bis heute andauert.
Von 2002 bis 2023 war ich im Vorstand/Präsidium des Deutschen Wasserstoff- und Brennstoffzellen-Verbandes (2003-2014 Vorstandsvorsitzender) mit der Aufgabe, den Wassersstoff in Wirtschaft und Politik voranzutreiben.
Zurzeit fokussiere ich mich auf die Bildungsarbeit für den Wasserstoff, zum Beispiel mit dem Aufbau eines berufsbegleitenden Master-Studienganges an der Dresden International University (DIU) und der Technischen Akademie Esslingen.

Wasserstoff wird sehr emotional diskutiert. Auf Erdgas basierend ist dieser schon immer in großen Mengen im täglichen Einsatz. Ich denke da beispielsweise an die Chemieindustrie – aber eben mit CO2-Abdruck. Nun geht es um den regenerativ erzeugten, den grünen, aber auch den gelben (mit Biogas) und die Nutzung von Überschussstrom aus Kohle- und Kernkraftwerken für schwarzen bzw. roten/türkisen Wasserstoff sowie die Vermeidung von CO2-Emissionen (Dekarbonisierung). Wie sieht Ihr Zukunftsszenario aus? Von wo wird der Wasserstoff zu uns kommen? Können wir diesen selbst in ausreichender Menge produzieren, wie mancher Politiker dies so sieht?
Die emotionale Diskussion kommt häufig daher, dass von einem singulären Standpunkt aus argumentiert wird – sei es zum Beispiel von einem Vorurteil bezüglich der Wasserstoff-Sicherheit, dem Energiebedarf bei der Wasserstoff-Produktion oder einem kurzfristigen Profitstreben. Im Sinne der Bedeutung des Wasserstoffs für eine nachhaltige Energieversorgung ist es zielführender, den Wasserstoff in seiner ganzheitlichen Bedeutung zu betrachten. Diese liegt wesentlich in seiner Fähigkeit, sehr große Energiemengen im Bereich von mehreren Terrawattstunden zu speichern und damit die Fluktuationen des Angebotes der erneuerbaren Primärenergien auszugleichen. Das ist das Fundament der Versorgungssicherheit und damit von zentraler volkswirtschaftlicher Bedeutung. Dazu kommt langfristig nur CO2-freier Wasserstoff oder CO2-neutraler Wasserstoff aus Biomasse in Frage. Eventuell ist auch Wasserstoff aus Pyrolyse von organischen Abfällen und Kunststoffen denkbar, wenn das Recycling des Kohlenstoffs und anderer Reststoffe gelingt.
In der Übergangsphase, wenn eventuell noch nicht genügend grüner Wasserstoff zur Verfügung steht, um die Marktpotenziale der Wasserstoff-Technologien schnellstmöglich hochzufahren, wird auch Wasserstoff aus anderen Quellen erforderlich sein; aber bitte nur so viel wie nötig und so wenig wie möglich.

Die Infrastruktur für den Transport steht auf der einen Seite – Beimischung (Blending) in Gasnetzen. Parallel soll es ausschließlich Wasserstoff transportierende Pipelines geben. Wie sehen Sie da die zukünftige Entwicklung? Auch bezogen auf andere Netze wie die Stromnetze.
Die Zumischung von Wasserstoff in das Erdgasnetz ist eine erste Möglichkeit, ihn in Netzen zu verteilen. Allerdings ist dieses Verfahren nicht neu. Bereits in früheren Stadtgasnetzen mit Synthesegas war ein H2-Gehalt von circa 50 % üblich. Beispielseise wurde die erste Flotte von Wasserstoff-Fahrzeugen in Kundenhand 1984 bis 1988 in West-Berlin mit Wasserstoff betrieben, der mit einer Reinheit von 5.0 mittels eines dreistufigen PSA-Verfahren (Pressure-Swing-Adsorption) aus dem Berliner Stadtgas gewonnen wurde.
Heute laufen die ersten Versuche der H2-Zumischung im Erdgasnetz mit einem Anteil von bis zu 30 % mit gutem Erfolg inclusive der begleitenden Sicherheitsuntersuchungen zum Beispiel der Zündgrenzen des Gemisches. Eine direkte Nutzung des Gasgemisches ist allerdings nur thermisch möglich. Für eine bessere exergetische Nutzung des Wasserstoffs – zum Beispiel über die Brennstoffzelle – ist eine Abtrennung erforderlich. Daher wird die Zumischung wahrscheinlich nur in einer Übergangsphase stattfinden mit dem Ziel, am Ende ein vollständiges Wasserstoffnetz zu haben.
Zusätzlich zum Bedarf der H2-Speicherung innerhalb Deutschlands ist auch zu berücksichtigen, dass der erforderliche Import erneuerbarer Energien insbesondere bei interkontinentalem Transport nur über den Wasserstoff geht, so dass auch für dessen Verteilung ein H2-Netz erforderlich sein wird.

Wie sehen Sie die Entwicklung in der Elektromobilität bezogen auf den Einsatz der Batterie und der Brennstoffzelle in der Welt und in den verschiedenen Einsatzfeldern? Ergänzen sich beide Varianten oder stehen diese im Wettbewerb? Welche Variante hat für Sie das größte Potential? Worin könnten Hürden liegen, die mancher Entwicklung im Weg steht?
Ich bin überzeugt, dass der Brennstoffzellen-Pkw weltweit kommen wird. Er steht meines Erachtens auch nicht in Konkurrenz zum Batterie-Pkw, sondern beide ergänzen sich. Batterie-Fahrzeuge werden direkt über das elektrische Netz beladen, was bezüglich des Wirkungsgrades der Energiekette optimal ist. Das gilt aber nur, wenn das elektrische Netz ausreichend stabil ist und die Energie nicht mit Wasserstoff zwischenzeitlich gespeichert werden musste (z. B. bei Dunkelflaute). Dann wäre die direkte Nutzung des Wasserstoffs in einem H2/BZ-Fahrzeug sinnvoller. Ein H2/BZ-Fahrzeug bezieht seine Energie immer aus den Speichern und nie direkt aus dem Stromnetz und trägt damit zur Stabilisierung des elektrischen Netzes in Zeiten eines schwachen Primärenergie-Angebotes bei.
Je nach dem Fahrprofil eines Autos und der vorrangig zur Verfügung stehenden Energiequelle (z. Z. PV-Anlage mit Batteriespeicher im eigenen Haus) kann ein Batterie- oder BZ-Fahrzeug Vorteile haben. Auch die Kombination beider Technologien in einem Fahrzeug (Batterie für die täglichen kurzen Strecken – die Brennstoffzelle für die längeren Fahrten) wie beim Daimler GLC kann sinnvoll sein, weil dann Wirkungsgrad und Versorgungssicherheit gut kombinierbar sind.
Die Hürden sind aus meiner Sicht beim Batterie-Fahrzeug die CO2-Emissionen bei der Batterie-Produktion und die noch nicht gelösten Probleme des Recycling und beim H2/BZ-Fahrzeug die noch unzureichende Infrastruktur und Verfügbarkeit des grünen Wasserstoffs.

Aus China ist zu hören, dass da führende Kfz-Hersteller Prototypen für BZ-Fahrzeuge entwickelt haben. Toyota und Hyundai geben sich technologieoffen und setzen neben der Batterie auf wasserstoffbetriebene Kfz aller Art, vom Pkw (Mirai, Nexo) bis hin zu Bussen und Nfz. Was beziehungsweise welchen Weg würden Sie der deutschen Autoindustrie empfehlen? VW und andere – außer BMW – sehen die Elektromobilität ausschließlich auf die batterieelektrische bezogen. Die Brennstoffzelle und Wasserstoff finden da nicht statt. Wo stehen wir da in 10 bis 20 Jahren – in Deutschland, der EU und in der Welt?
Die Japaner (Toyota, Honda), Koreaner (Hyundai) und auch chinesische Hersteller haben angekündigt, Weltmarktführer in dieser Branche werden zu wollen. Sie fahren ihre Produktionsmöglichkeiten entsprechend hoch. Toyota und Hyundai haben die ersten Fahrzeuge auch auf dem europäischen Markt, Hyundai auch mit einer großen Lkw-Flotte in der Schweiz. Auch Daimler und VW hatten marktreife BZ-Pkw in Kalifornien im Einsatz und Daimler hat 2011 mit der Weltumrundung von drei H2/BZ-Fahrzeugen der B-Klasse die Marktreife demonstriert.
Zurzeit sind die Batterie-Fahrzeuge natürlich weit voraus. Das liegt nach Aussage der Herstellerfirmen daran, dass die strengen Klimaziele wesentlich schneller mit Batterie-Fahrzeugen zu erreichen sind, weil die Fertigungstiefen und damit auch der Personalaufwand deutlich niedriger ist. Hinzu kommt, dass die Batterieentwicklung bezüglich. Betankungsdauer, Zyklisierungsstabilität und Reichweite deutliche Fortschritte gemacht hat.
Bei Lkw, großen Arbeitsfahrzeugen (z. B. Müllsammler) und Bussen werden allerdings die Batterien so schwer oder die Ladezeiten so lang, dass H2/BZ-Antriebe deutliche Vorteile haben. Daher fokussieren die meisten deutschen Hersteller ihre Entwicklungen darauf. Es ist zu hoffen, dass diese Entwicklungen so schnell in den Markt kommen, dass wir unsere Klimaziele noch erreichen.

Wasserstoff in den Wärmemärkten (Gasheizung) wird sehr zurückhaltend betrachtet oder sogar gar von mancher politischer Seite als nicht zielführend beschrieben. Wo sehen Sie da das Potential? Firmen wie Viessmann hatten hierbei große Pläne, Gasheizungen H2-ready zu machen. Wie schätzen Sie die Entwicklung ein – auch in Konkurrenz zur strombasierten Wärmepumpe?
Zunächst einmal müssen wir beim „Wärmemarkt“ unterscheiden zwischen der Hochtemperatur-Wärme für industrielle Prozesse (z. B. für die Glasindustrie) und der Gebäudeheizung. Bei der Hochtemperatur-Wärme sehe ich nur den grünen Wasserstoff als CO2-freie Wärmequelle.
Zur Gebäudeheizung sind in Japan schon einige zig-tausend Brennstoffzellen-Heizgeräte im Markt, die gleichzeitig Strom und Wärme produzieren. Dabei entspricht das Verhältnis der Strom- und Wärmemenge etwa dem Bedarf eines typischen japanischen Haushalts. In Deutschland sind die Wohnungen deutlich größer und damit auch der Wärmebedarf. Folglich müsste bei einem BZ-Heizgerät noch ein zusätzlicher Brenner für den Spitzen-Wärmebedarf eingebaut werden. Das ist sicherlich sub-optimal, da der Exergieinhalt des Wasserstoffs zu schade ist, um diesen nur thermisch zu nutzen. Darüber hinaus sind kleine Anlagen (z. B. für Einfamilienhäuser) relativ teuer. Große Anlagen (Quartierlösungen) sind deutlich rentabler – im Wesentlichen aufgrund von Skalierungs-effekten.
Ob eine Wärmepumpe oder ein BZ-Heizgerät vorzuziehen ist, hängt vom Einzelfall ab und sollte genau geprüft werden, auch im Hinblick auf die Versorgungssicherheit bei der Stromversorgung und die Bedeutung des Wasserstoffs als Energiespeicher.

Wenn Sie der Politik in Deutschland – der Ampel-Regierung, aber auch der nächsten Regierung – Empfehlungen geben würden, was die Energiewende, die Elektromobilität und auch die Wärmemärkte bezogen auf Wasserstoff angeht: Wie würden diese aussehen? Welche Maßnahmen müssten Ihrer Meinung nach getroffen werden? Wie ließe sich der Hochlauf der Wasserstoffwirtschaft beschleunigen? Ist der amerikanische IRA da Vorbild?
Das sind sehr viele Fragen auf einmal. Zur Strukturierung der Antworten möchte ich von der volkswirtschaftlichen Bedeutung der Versorgungssicherheit ausgehen. Diese wird durch den Wasserstoff und seine Speicherfähigkeit großer Energiemengen (durch Moleküle) gewährleistet. Die erneuerbaren Primärenergien kommen vorrangig durch Elektronen in die Anwendung, und deren direkte Nutzung ermöglicht die besten Wirkungsgrade. Beides wird für eine nationale Energiestrategie gebraucht.
Hinzu kommt, dass für den notwendigen Import erneuerbarer Primärenergie Wasserstoff als Energieträger benötigt wird, insbesondere bei Importen aus Übersee. Wir sind in Deutschland in der glücklichen Situation, dass wir für die „Träger“ der Effizienz (Elektronen) und der Speicherfähigkeit (Moleküle) verfügbare Netze haben. Dabei sind elektrischen Netze noch auszubauen, die Erdgasnetze und Erdgasspeicher – soweit wie möglich auf Wasserstoff umzurüsten und gegebenenfalls neue H2-Speicher noch auszusolen.
Auf dieser Basis sollte eine nationale Energiestrategie der Regierung aufbauen, die die gesamte Wertschöpfungskette umfasst – von der Versorgungssicherheit der Rohstoffe bis hin zum Recycling aller eingesetzten Materialien. Bei der Mehrheit der Politiker, mit denen ich Kontakt hatte, war ich erfreut über den Sachverstand. Nur manchmal haben partei-ideologische Vorbehalte gegenüber dem Wasserstoff die Kommunikation erschwert. Insgesamt ist Deutschland und auch große Teile Europas auf einem guten Weg – nicht zuletzt auch durch die engagierte Arbeit des Nationalen Wasserstoff-Rates (NWR).
Es fehlen zurzeit noch Regelwerke für die Umsetzung der nationalen Wasserstoff-Strategien, so dass die Firmen noch keine ausreichende Planungssicherheit haben oder an kurzfristigen betriebswirtschaftlichen Gewinn festhalten. Es ist zu hoffen, dass mit der Erstellung eines Rechtsrahmens für die Einführung des Wasserstoffs auch die Geschwindigkeit der Umsetzung zunimmt.
Aber: Die ersten Abschnitte des „European Hydrogen Backbone“ werden gebaut, und die Phantasien der all-elektrischen Welt mit der Forderung des Rückbaus der Gasnetze sind Geschichte.
Eine Förderung nach dem amerikanischen IRA-Vorbild halte ich bezüglich der Geldmenge in Deutschland für nicht realisierbar. Aber um zu verhindern, dass erfolgversprechende deutsche Entwicklungen wegen der IRA-Förderungen in die USA verlagert werden, wäre in Deutschland eine Fokussierung auf wirklich wichtige Projekte empfehlenswert. Die „ergebnisoffene“ Förderung war nicht immer zielführend.
Wenn nach einem ausländischen Vorbild für unsere Aktivitäten gesucht wird, fällt mir zuerst Japan ein, wo ein Ministerium für Internationalen Handel und Industrie (MITI) nach anfänglichen umfassenden Voruntersuchungen eine Vorauswahl der zielführenden Optionen erstellt und darauf die weiteren Arbeiten konzentriert und massiv fördert.

Haben Sie Anmerkungen zum Themenkomplex, die unsere Leser interessieren sollten/dürften? Eine Vision? Ein Zukunftsszenario?
Ich habe als Vision oder Zukunftsszenario eigentlich nur das, was vermutlich jede(r) von uns hat: Dass wir es wirklich schaffen, den Klimawandel zu stoppen, damit unsere Erde auch für die kommenden Generationen bewohnbar bleibt.
Vielen Dank!

Interviewer: Sven Jösting

Erprobung von BZ-Bussen und ihren H2-Tankstellen

Erprobung von BZ-Bussen und ihren H2-Tankstellen

Zwischenbilanz zur Analyse der Leistungsfähigkeit
Elektromobilität

Brennstoffzellenbusse (BZ-Busse) werden seit rund 20 Jahren erprobt. Mit europäischer Förderung laufen derzeit Demonstrationsprojekte mit rund 300 dieser Fahrzeuge. Die Leistungsfähigkeit der Busse und ihrer Wasserstofftankstellen wird auf der Basis von Betriebsdaten analysiert. Dieser Artikel möchte anhand ausgewählter Indikatoren eine Zwischenbilanz ziehen, inklusive Vergleichen mit den Ergebnissen bereits abgeschlossener Projekte. Insgesamt zeigen die Busse ein positiveres Bild als die Tankstellen.

Im Rahmen der Projekte JIVE und JIVE 2 (2017 bis 2024 bzw. 2018 bis 2025) sind die Busse an 16 Standorten in sechs Ländern im Einsatz (s. Abb. 2). Die örtlichen Flotten umfassen fünf bis 54 BZ-Busse. Zum Einsatz kommen einstöckige 12-m-Solobusse, Doppeldecker (in Großbritannien) sowie an einem Standort straßenbahnähnliche 18-m-Gelenkbusse. Die Wasserstofftankstellen wurden zum Teil aus einem weiteren Projekt namens MEHRLIN gefördert (Projektende: 30. Juni 2023).

Standorte der Projekte JIVE, JIVE 2 und MEHRLIN (Aberdeen, Auxerre, Barcelona, Birmingham, Bozen, Brighton, Emmen, Gelderland, Groningen, Region Köln, London, Pau, Südholland, Toulouse, Wiesbaden und Wuppertal) sowie Länder mit Beobachter-Regionen. Wegen einer Neuausrichtung beim Busbetreiber ist der Standort Wiesbaden nicht mehr aktiv.

Zu den Aktivitäten im Arbeitspaket „Monitoring and Analysis“ gehören neben dem hier auszugsweise vorgestellten „Performance Assessment“ auch ein Umwelt- und Kostenvergleich zwischen BZ- und Batteriebussen [1] und die Dokumentation von „Best Practice“ [2].
Aus Gründen der Vertraulichkeit wurden die Ergebnisse so aggregiert, dass keine Rückschlüsse auf einzelne Standorte möglich sind, soweit die Informationen nicht ohnehin bereits öffentlich zugänglich sind.

Stand Mitte 2023
Bis Ende Juni 2023 (Stand der Datenbasis im Folgenden) legten die Busse rund 13 Millionen Kilometer zurück. In über 63.000 Tankvorgängen wurden mehr als 1 Million Kilogramm Wasserstoff abgegeben.

Verfügbarkeit der Brennstoffzellenbusse


Verfügbarkeit der Busse in JIVE/JIVE 2 im Vergleich mit früheren Projekten

Abbildung 3 zeigt einen Vergleich der Verfügbarkeit in den größeren Projekten zur Erprobung von Brennstoffzellenbussen seit 2001. Die Kastengrafiken zeigen jeweils die Maximal- und Minimalwerte, die beiden mittleren Quartile und, als waagrechte Linie innerhalb des Kastens, den Median.

Die BZ-Busse bis 2009 in den Projekten CUTE und HyFLEET:CUTE waren noch nicht hybridisiert, das heißt, es gab keine Batterie zur Unterstützung der Brennstoffzelle und keine Möglichkeit zur Rückgewinnung von Bremsenergie. Da pro Standort stets zwei Monteure der Hersteller anwesend waren, um Probleme zu beheben, war die Verfügbarkeit der Fahrzeuge vergleichsweise hoch.

Kastengrafiken (Box-Plots) sind ein Werkzeug zur aggregierten grafischen Darstellung von Daten, die mehr Information vermitteln können als zum Beispiel Mittelwerte und Standardabweichungen. Der Median ist der zentrale Wert einer auf- oder absteigend sortierten Liste von Daten. Bei Werten von beispielsweise 90 % – 90 % – 85 % – 80 % – 60 % – 40 % – 10 % beträgt der Median 80 %, der Mittelwert dagegen 65 %. Die beiden mittleren Quartile umfassen das Viertel aller Werte über und unter dem Median und sind somit ein Indikator dafür, wie stark die zentrale Hälfte aller Werte um den Median streut.

Ein signifikanter Vergleich ist daher vor allem zwischen dem Projekt CHIC mit der ersten Generation hybridisierter BZ-Busflotten (2010 bis 2016) und JIVE/JIVE 2 (seit 2017/18) möglich. Abbildung 3 zeigt eine deutliche Verbesserung der Bus-Verfügbarkeit in den aktuellen Projekten. Einzelne Standorte erreichen mehr als 99 Prozent, während nicht alle an das Ziel von über 90 Prozent herankommen.

Ausfallzeiten werden zumeist nicht von Komponenten verursacht, die dem Brennstoffzellenantrieb zuzuordnen sind, sondern Auslöser sind häufig konventionelle Bauteile. Längere Ausfallzeiten entstanden zum Beispiel dadurch, dass ein Hersteller unter anderem die Halterungen für die Wasserstofftanks verstärken musste, da die Vibrationen in Bussen ohne Dieselmotor unterschätzt worden waren. Bei einem anderen Fabrikat mussten die Klimaanlagen getauscht werden.

Laufleistung
Die Busse haben gezeigt, dass 500 Kilometer pro Tag beziehungsweise ohne Zwischenbetankung zurückgelegt werden können. Geringere Laufleistungen resultieren aus den örtlichen Einsatzbedingungen, also nicht aus Beschränkungen, die sich aus dem Wasserstoff-/Brennstoffzellenantrieb ergeben. Ein Standort setzt die Fahrzeuge zum Beispiel als Vorfeldbusse auf dem Flughafen ein, wo kurze Wege zurückzulegen sind. Insgesamt erfüllen die Fahrzeuge die Erwartungen der Betreiber.

Spezifischer Kraftstoffbedarf


Entwicklung des spezifischen Kraftstoffbedarfs von Projekt zu Projekt. Seit CHIC sind die Antriebe hybridisiert.

Abbildung 4 zeigt, wie sich der Kraftstoffbedarf pro 100 Kilometer Laufleistung entwickelt hat. Von CUTE zu HyFLEET:CUTE wurde zunächst der nicht-hybridisierte Antrieb optimiert. Ein Effizienzsprung ergab sich durch die Hybridisierung im Projekt CHIC. Im Rahmen von JIVE/JIVE 2 werden noch einmal deutlich geringere Werte von bis zu 6,5 kg/100 km erreicht. Damit wird das Projektziel von 9 kg/100 km für Solobusse in der Regel deutlich unterboten, selbst von den Doppeldeckern. Auch die 18-m-Fahrzeuge unterschreiten das Ziel von 14 kg/100 km klar.

Der saisonale Einfluss der Umgebungstemperatur beziehungsweise der Einfluss des Heizenergiebedarfs auf den Kraftstoffverbrauch konnte bespielhaft für zwei Standorte ermittelt werden, deren Fahrzeuge keine Klimaanlage besitzen, die also ohne Energiebedarf für Kühlung im Sommer auskommen. Hier variiert der Kraftstoffverbrauch über das Kalenderjahr um ca. ± 1 bis 2 kg/100 km bzw. ± 15 bis 20 %.

Zwischenfazit
Aufgrund der positiven Erfahrungen mit den BZ-Bussen haben sich einige Standorte entschlossen, weitere Fahrzeuge dieses Typs zu beschaffen. Hervorzuheben ist hier der Regionalverkehr Köln, der über die 50 in JIVE beziehungsweise JIVE 2 geförderten Busse hinaus bereits Verträge für bis zu 100 weitere Einheiten geschlossen hat. Andererseits wurde die Erweiterung der Flotte an einem anderen Standort zurückgestellt, weil es erhebliche Probleme mit der Wasserstofftankstelle gab; mehr dazu im Folgenden.

Vertankte Wasserstoffmengen


Vertankte Wasserstoffmengen pro Quartal als Summe aller Standorte

Bis Mitte 2023 wurden an 18 Tankstellen mehr als 1 Million Kilogramm Wasserstoff abgegeben. Die zeitliche Entwicklung ist in Abbildung 5 dargestellt. Die Quartalswerte für 2020 sind gering, da – bedingt durch die Corona-Pandemie – erst wenige Fahrzeuge in Betrieb waren beziehungsweise gingen und die Laufleistungen häufig geringer waren als sonst üblich. 2021 begann ein deutlicher Anstieg, unterbrochen von einem Rückgang im ersten Quartal 2022. Letzterer war bedingt durch:

–    Probleme mit den Bussen an mehreren Standorten, insbesondere bedingt durch Nachrüstungen wegen der unerwartet starken Vibrationen

–    Probleme an mehreren Tankstellen, die in einigen Fällen den Busbetrieb länger zum Erliegen brachten

–    Steigende Energie- bzw. Wasserstoffpreise nach dem Angriff auf die Ukraine, weshalb einige Betreiber den Einsatz ihrer BZ-Busse reduzierten

Seit dem zweiten Quartal 2022 steigen die Werte wieder nahezu stetig, auch bedingt durch die Inbetriebnahme weiterer Busse. Die Tankstellen stoßen in der Regel nicht an ihre Kapazitätsgrenzen: Durch den unerwartet niedrigen spezifischen Kraftstoffbedarf der Busse und die zeitweise geringeren Laufleistungen als geplant sind einige der Tankstellen zeitweise erheblich unterausgelastet.

Verfügbarkeit der Wasserstofftankstellen


Verfügbarkeit der Tankstellen in JIVE/JIVE 2/MEHRLIN im Vergleich mit früheren Projekten

Das Mindestziel für die Verfügbarkeit der Wasserstofftankstellen in JIVE, JIVE 2 und MEHRLIN ist größer 98 Prozent, wobei 99 Prozent angestrebt werden. Dabei bleiben Zeiten der Nichtverfügbarkeit für planmäßige Wartung unberücksichtigt. Abbildung 6 zeigt, dass dieses Mindestziel von weniger als der Hälfte der Standorte erreicht wird (der Median liegt unter 98 %). Im Projekt CHIC waren die Tankstellen durchschnittlich deutlich verfügbarer, bei einem Zielwert von ebenfalls über 98 Prozent.

Die Ursachen für geringe Verfügbarkeiten lassen sich, aus der Perspektive der Betankungseinheit, in zwei Bereiche aufgliedern:

–    Externe Gründe bedeuten, dass die Wasserstofferzeugung vor Ort ausgefallen ist oder die Anlieferung von Wasserstoff nicht rechtzeitig erfolgt ist oder beides, so dass keine Betankungen möglich sind. Dies ist an zahlreichen Tankstellen zeitweise eingetreten.

–    Interne Gründe bedeuten, dass wegen technischer Probleme keine Betankungen möglich sind. Davon sind alle Tankstellen betroffen, wenn auch in deutlich unterschiedlichem Maße.

Dabei haben sich die wesentlichen Ursachen für Ausfälle von Wasserstofftankstellen für Busse aus internen Gründen in den letzten 20 Jahren kaum verändert. Sie umfassen insbesondere Probleme mit

–    Wasserstoffkompressoren

–    den Komponenten zur Betankung, insbesondere den Füllkupplungen mit ihren empfindlichen Infrarot-Sensoren zur Datenübertragung vom Bus an die Tankstelle

–    der Qualität bzw. Schnelligkeit des Hersteller-Services, d. h. Ausfälle wären teilweise vermeidbar gewesen oder dauern unnötig lange.

Hinzu kommen, nach dem Wechsel zu Typ-4-Tanks auf den meisten Bussen der aktuellen Generation, Herausforderungen bei der Vorkühlung des Wasserstoffs zur Gewährleistung einer hinreichend schnellen und vollständigen Befüllung, bedingt durch Softwareprobleme und fehlende anerkannte Betankungsprotokolle.

Die Partner des JIVE/JIVE 2/MEHRLIN-Konsortiums sehen die Gefahr, dass die breite Einführung von BZ-Bussen an einem Mangel an verlässlicher Betankungsinfrastruktur scheitern könnte.

Zusammenfassung

Die Erprobung der BZ-Busse und Wasserstofftankstellen in den Projekten JIVE, JIVE 2 und MEHRLIN wurde beziehungsweise wird durch eine Reihe externer Faktoren negativ beeinflusst. Dazu gehören die Corona-Pandemie, gestiegene Wasserstoffpreise und Probleme mit der Wasserstoffbelieferung.

Positiv ist festzuhalten, dass einige Standorte sich aufgrund guter Erfahrungen bereits vor Projektabschluss entschieden haben, ihre BZ-Bus-Flotte zu erweitern.

Die Busse zeigen insgesamt eine bessere Leistungsfähigkeit als die Fahrzeuge der Vorgängergeneration, auch wenn bislang nicht an allen Standorten die Zielwerte, wie eine Verfügbarkeit von mindestens 90 Prozent, erreicht werden. Insbesondere ist die in JIVE/JIVE 2 deutlich verbesserte Effizienz der Busse hervorzuheben.

Bei der Verfügbarkeit der Wasserstofftankstellen ist bisher keine generell positive Entwicklung zu erkennen. Ausfälle der Tankstellen wegen interner technischer Probleme haben im Einzelfall zu einem längeren Stillstand der lokalen BZ-Bus-Flotte geführt. Es ist bemerkenswert, dass auch nach rund 20 Jahren Erfahrung mit Tankstellen auf 350-bar-Druckniveau die Probleme mit einigen ihrer Komponenten nicht gelöst werden konnten.

Danksagung

Die Projekte JIVE und JIVE 2 werden von Clean Hydrogen Partnership (vormals Fuel Cells and Hydrogen Joint Undertaking) im Rahmen der Zuwendungsvereinbarungen Nr. 735582 bzw. 779563 gefördert. Clean Hydrogen Partnership erhält Unterstützung aus dem Horizon-2020-Programm der Europäischen Union für Forschung und Innovation sowie von Hydrogen Europe und Hydrogen Europe Research. Das Projekt MEHRLIN wurde aus Mitteln der Connecting Europe Facility der Europäischen Union kofinanziert.

Die Ergebnisse wurden erstmals auf der Zero Emission Bus Conference 2023 vorgestellt.

Literatur

[1]        A. Zimmerer, S. Eckert und V. Roderer, Environmental Impacts and External Cost Benefits of Fuel Cell Buses. Comparison of Fuel Cell Buses with Battery Electric Buses, 2023. https://fuelcellbuses.eu/publications.

[2]        K. Buss, K. Stolzenburg, N. Whitehouse and S. Whitehouse, JIVE Third Best Practice and Commercialisation Report / JIVE 2 Second Best Practice Information Bank Report, 2022. https://fuelcellbuses.eu/publications.

AutorInnen:
Klaus Stolzenburg
Ingenieurbüro PLANET GbR, Oldenburg
k.stolzenburg@planet-energie.de
Katharina Buss
Ingenieurbüro PLANET GbR, Oldenburg
k.buss@planet-energie.de
Vanessa Roderer
Sphera Solutions GmbH, Leinfelden-Echterdingen
VRoderer@sphera.com
Stefan Eckert
Sphera Solutions GmbH, Leinfelden-Echterdingen
SEckert@sphera.com

 

Ballard Power: Die BZ-Kapazitäten stehen

Ballard Power: Die BZ-Kapazitäten stehen

Der Aufbau verschiedener Produktionslinien für Stacks steht bei Ballard Power im Mittelpunkt. Damit kann das Unternehmen in den nächsten Jahren entsprechend dem Hochlauf agieren und liefern. Mit noch knapp 800 Mio. US-$ auf der Bank ist Ballard in der komfortablen Situation, alle Investitionen aus eigener Kraft stemmen zu können. Dass das Unternehmen an der Börse nur mit knapp einer Mrd. US-$ bewertet wird, erscheint angesichts der Perspektiven unverständlich.

Strategisch interessierte Unternehmen könnten und sollten die Chance nutzen und bei Ballard einsteigen, solange die Börsenbewertung so niedrig ist. Ob noch einmal ein Herr Adani anklopft? Oder Automobilzulieferer wie Dana, Tyco oder Magna? Alles möglich. Der einzige Schutz dagegen: deutlich höhere Aktienkurse, also eine Börsenbewertung, die den Zukunftsaussichten entspricht.

Zahlenwerk hat nur wenig Aussagekraft

Die aktuellen Umsätze werden in den nächsten Jahren dramatisch übertroffen werden, wenn der Hochlauf der BZ-Märkte für Nutzfahrzeuge aller Art, Schiffe und Schienenfahrzeuge beginnt. Insofern sind die Quartalsverluste 2023 und 2024 hohen F&E-Aufwendungen und eben dem Kapazitätsaufbau geschuldet und wenig bis gar nicht aussagekräftig. Was wäre, wenn in einigen Jahren statt der heute noch überschaubaren Einzelaufträge von 50, 100, 200 BZ-Modulen pro Jahr 1.000, 5.000, 10.000 und mehr BZ-Module ausgeliefert würden – und das bezogen auf jeden Einzelmarkt? Dann hat Ballard die nötigen Kapazitäten und kann liefern.

Eröffnung der BZ-Produktion von Still am Standort Hamburg

Der Gabelstaplerhersteller Still (Tochter von Kion, die mehrheitlich zur chinesischen Weichai-Gruppe gehört – die wiederum etwa 15 Prozent an Ballard Power hält) setzt auf die BZ-Stacks von Ballard Power. Am 10. November 2023 fand in Hamburg die feierliche Eröffnung einer ersten Fertigungslinie für 24-Volt-Brennstoffzellensysteme statt. Perspektivisch sollen dort 4.000 BZ-Stapler pro Jahr vom Band laufen.

7-Mrd.-US-$-Hydrogen-Hub-Plan

Ballard profitiert indirekt massiv vom geplanten Aufbau eines US-weiten Netzwerks von sieben Zentren zur Wasserstoffproduktion (Hydrogen Hubs). Denn die flächendeckende Produktion von grünem Wasserstoff ist die Steilvorlage für viele – und erst recht zukünftige – Ballard-Kunden, in Produkte zu investieren, die Wasserstoff nutzen können: Logistiker, Lkw, Busse, Schiffe, Schienenfahrzeuge und vieles mehr. In sechs der sieben Hubs sieht Ballard für sich und seine Kunden die perfekte Positionierung in Sachen Wasserstoff und Brennstoffzelle.

Forsee Power erweist sich als Glücksgriff

Schaut man sich die aktuellen Zahlen des französischen Batterie-Herstellers Forsee Power an, muss man Ballard ein gutes Händchen bei der Investition – Ballard ist einer der größten Einzelaktionäre – bescheinigen: Ein sattes Umsatzplus von 83 Prozent im dritten Quartal auf 47,9 Mio. Euro. In den ersten neun Monaten betrug das Plus 67,6 Prozent auf 126,6 Mio. Euro. Im Gesamtjahr sollen es 160 Mio. Euro werden, 2024 dann 235 Mio. Euro, und 2028 sind 850 Mio. Euro Umsatz das Ziel.

Die beiden Unternehmen arbeiten perfekt zusammen, denn die Batterien von Forsee kommen unter anderem auch in den BZ-Systemen von Bussen und Ballard-Kunden zum Einsatz. Forsee erscheint mir bei etwa 2,50 Euro pro Aktie ein guter Kauf zu sein, wenn man die Batterie im Portfolio haben möchte und diese als Ergänzung zur Brennstoffzelle sieht.

Solaris ist der perfekte Vorreiter

Der polnische Bushersteller Solaris bestellt kontinuierlich mehr BZ-Module von Ballard, insgesamt allein in diesem Jahr schon 350 – vor kurzem kamen 62 hinzu. Da Ballard verschiedene Bushersteller als Partner für die Brennstoffzelle beliefert, ist Solaris ein sehr gutes Beispiel. Dieser Markt steht erst am Anfang, und Ballard hat als Nummer eins und Frontrunner bereits die Erfahrung von über 100 Mio. gefahrenen Kilometern. Der Newsletter Information Trends sieht den Markt für BZ-Langstreckenbusse generell als einen der am schnellsten wachsenden Wasserstoff-Märkte.

In den nächsten 15 Jahren sollen weltweit über 73,4 Mrd. US-$ in neue BZ-Busse investiert werden. Vorreiter ist China. BZ-Busse werden immer günstiger, auch wenn sie noch teurer sein werden als rein batterieelektrische Busse. Hier überzeugen die Argumente Reichweite und Zeit bzw. Art der Betankung. Parallel dazu wird die H2-Infrastruktur aufgebaut. Man bedenke: Ballard hat mehr als zehn große Bushersteller, die bei der Brennstoffzelle ausschließlich auf Ballard setzen. In China ist Ballard über ein Joint Venture mit Weichai Power auch Lieferant für diverse Bushersteller dort – das ist nur eine von über 30 Plattformpartnerschaften. Aktuell soll es weltweit Ausschreibungen für über 17.000 Busse geben.

Einzelaufträge werden immer größer

Randy MacEwen hat es als CEO schon gesagt: Von Kleinserien erfolgt der Hochlauf auf Großserien. Von Losgrößen von 10 bis 100 geht es jetzt massiv nach oben. Ähnliches gilt für viele andere Märkte: Der Schienenfahrzeughersteller Stadler meldet, dass man auf den Zuschlag für 25 wasserstoffbetriebene Züge warte, nachdem man in Kalifornien bereits einen Festauftrag für vier solcher Züge erhalten habe.

Bei Lkw setzen OEM-Partner wie die deutsche Quantron auf Ballard: Sie liefern unter anderem wasserstoffbetriebene Kleinlaster an Ikea. Die Plattformpartnerschaft mit Ford für den F-Max weckt große Erwartungen: Was würde es bedeuten, wenn Ballard die BZ-Module für über 10.000 Lkw pro Jahr liefern würde? Wichtig ist, dass man wie Ballard Technologieführer und auch lieferfähig (Kapazitäten) ist.

Meine einzige Sorge: Was passiert, wenn ein großer Player im Markt die Situation ausnutzt und Ballard ein Übernahmeangebot macht – so wie damals Cummins mit Hydrogenics? Eine Beteiligung eines strategischen Partners wäre indes ein Kurs-Turbo.

Risikohinweis

Jeder Anleger sollte sich bei der Anlage in Aktien immer seiner eigenen Risikoeinschätzung bewusst sein und auch an eine sinnvolle Risikostreuung denken. Die hier genannten BZ-Unternehmen bzw. Aktien stammen aus dem Bereich der Small- und Mid-Caps, das heißt, es handelt sich nicht um Standardwerte, und auch ihre Volatilität ist deutlich höher. Dieser Bericht stellt keine Kaufempfehlung dar. Alle Informationen basieren auf öffentlich zugänglichen Quellen und stellen hinsichtlich der Bewertung ausschließlich die persönliche Meinung des Autors dar, der seinen Fokus auf eine mittel- bis langfristige Bewertung und nicht auf kurzfristige Gewinne legt. Der Autor kann im Besitz der hier vorgestellten Aktien sein.

Autor: Sven Jösting, verfasst am 15. Dezember 2023

Weichai Power – größter Dieselmotorhersteller Chinas auf dem BZ-Highway

Weichai Power – größter Dieselmotorhersteller Chinas auf dem BZ-Highway

Weichai, © www.wallstreet-online.de
Stand: 15.03.2021, © www.wallstreet-online.de

Das Unternehmen Weichai Power, das hier bislang nur als Ballard-Partner genannt wurde, macht circa 20 Mrd. Euro Umsatz und hat eine Börsenbewertung, die ebenfalls circa 20 Mrd. Euro entspricht. Als Gewinn ausgewiesen wurden 2020 wohl gut 1 Mrd. Euro, wobei auch Dividenden ausgezahlt werden. Weichai Power besitzt selbst mehrere Busmarken und gilt als größter Dieselmotorenhersteller des Landes, der klar das Potential der Brennstoffzelle im Nutzfahrzeugsektor erkannt hat und hier nach eigener Aussage gar Marktführer werden will.

(mehr …)
Hannover Messe digital

Hannover Messe digital

EFOY Pro, © SFC
EFOY Pro, © SFC

Mit Spannung kann erwartet werden, wie in diesem Jahr die Hannover Messe aussehen wird. Die gute Nachricht für die H2– und BZ-Branche ist, dass die Industrieschau stattfindet. Die schlechte ist: Sie findet nicht als Präsenzveranstaltung statt. Die Deutsche Messe AG zeigte sich jedoch zuversichtlich, dass sie dennoch vieles zu bieten hat.

(mehr …)
preloader